Skip to main content
Solve for f, x, g, h, j, k, l, m, n, o, p, q
Tick mark Image

Similar Problems from Web Search

Share

h=i
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
i=g
Consider the third equation. Insert the known values of variables into the equation.
g=i
Swap sides so that all variable terms are on the left hand side.
i=8x
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{8}=x
Divide both sides by 8.
\frac{1}{8}i=x
Divide i by 8 to get \frac{1}{8}i.
x=\frac{1}{8}i
Swap sides so that all variable terms are on the left hand side.
f\times \left(\frac{1}{8}i\right)=20\left(2\times \left(\frac{1}{8}i\right)^{3}+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
Consider the first equation. Insert the known values of variables into the equation.
f\times \left(\frac{1}{8}i\right)=20\left(2\times \left(-\frac{1}{512}i\right)+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
Calculate \frac{1}{8}i to the power of 3 and get -\frac{1}{512}i.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
Multiply 2 and -\frac{1}{512}i to get -\frac{1}{256}i.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i+3\left(-\frac{1}{64}\right)-2\times \left(\frac{1}{8}i\right)\right)
Calculate \frac{1}{8}i to the power of 2 and get -\frac{1}{64}.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i-\frac{3}{64}-2\times \left(\frac{1}{8}i\right)\right)
Multiply 3 and -\frac{1}{64} to get -\frac{3}{64}.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i-\frac{3}{64}-\frac{1}{4}i\right)
Multiply -2 and \frac{1}{8}i to get -\frac{1}{4}i.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{3}{64}-\frac{65}{256}i\right)
Do the additions in -\frac{1}{256}i-\frac{3}{64}-\frac{1}{4}i.
f\times \left(\frac{1}{8}i\right)=-\frac{15}{16}-\frac{325}{64}i
Multiply 20 and -\frac{3}{64}-\frac{65}{256}i to get -\frac{15}{16}-\frac{325}{64}i.
f=\frac{-\frac{15}{16}-\frac{325}{64}i}{\frac{1}{8}i}
Divide both sides by \frac{1}{8}i.
f=\frac{\frac{325}{64}-\frac{15}{16}i}{-\frac{1}{8}}
Multiply both numerator and denominator of \frac{-\frac{15}{16}-\frac{325}{64}i}{\frac{1}{8}i} by imaginary unit i.
f=-\frac{325}{8}+\frac{15}{2}i
Divide \frac{325}{64}-\frac{15}{16}i by -\frac{1}{8} to get -\frac{325}{8}+\frac{15}{2}i.
f=-\frac{325}{8}+\frac{15}{2}i x=\frac{1}{8}i g=i h=i j=i k=i l=i m=i n=i o=i p=i q=i
The system is now solved.