Skip to main content
Solve for f, x, g, h, j, k, l, m, n, o, p, q, r
Tick mark Image

Similar Problems from Web Search

Share

h=i
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
i=f\left(-3\right)
Consider the third equation. Insert the known values of variables into the equation.
\frac{i}{-3}=f
Divide both sides by -3.
-\frac{1}{3}i=f
Divide i by -3 to get -\frac{1}{3}i.
f=-\frac{1}{3}i
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}ix=-6x+3
Consider the first equation. Insert the known values of variables into the equation.
-\frac{1}{3}ix+6x=3
Add 6x to both sides.
\left(6-\frac{1}{3}i\right)x=3
Combine -\frac{1}{3}ix and 6x to get \left(6-\frac{1}{3}i\right)x.
x=\frac{3}{6-\frac{1}{3}i}
Divide both sides by 6-\frac{1}{3}i.
x=\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}
Multiply both numerator and denominator of \frac{3}{6-\frac{1}{3}i} by the complex conjugate of the denominator, 6+\frac{1}{3}i.
x=\frac{18+i}{\frac{325}{9}}
Do the multiplications in \frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}.
x=\frac{162}{325}+\frac{9}{325}i
Divide 18+i by \frac{325}{9} to get \frac{162}{325}+\frac{9}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=3\left(\frac{162}{325}+\frac{9}{325}i\right)+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Consider the second equation. Insert the known values of variables into the equation.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Multiply 3 and \frac{162}{325}+\frac{9}{325}i to get \frac{486}{325}+\frac{27}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{214}{27}-\frac{971}{729}i\right)
Calculate \frac{162}{325}+\frac{9}{325}i to the power of -3 and get \frac{214}{27}-\frac{971}{729}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+\left(\frac{1498}{9}-\frac{6797}{243}i\right)
Multiply 21 and \frac{214}{27}-\frac{971}{729}i to get \frac{1498}{9}-\frac{6797}{243}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{491224}{2925}-\frac{2202464}{78975}i
Add \frac{486}{325}+\frac{27}{325}i and \frac{1498}{9}-\frac{6797}{243}i to get \frac{491224}{2925}-\frac{2202464}{78975}i.
g=\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i}
Divide both sides by \frac{162}{325}+\frac{9}{325}i.
g=\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}
Multiply both numerator and denominator of \frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i} by the complex conjugate of the denominator, \frac{162}{325}-\frac{9}{325}i.
g=\frac{\frac{55984}{675}-\frac{18088}{975}i}{\frac{81}{325}}
Do the multiplications in \frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}.
g=\frac{727792}{2187}-\frac{18088}{243}i
Divide \frac{55984}{675}-\frac{18088}{975}i by \frac{81}{325} to get \frac{727792}{2187}-\frac{18088}{243}i.
f=-\frac{1}{3}i x=\frac{162}{325}+\frac{9}{325}i g=\frac{727792}{2187}-\frac{18088}{243}i h=i j=i k=i l=i m=i n=i o=i p=i q=i r=i
The system is now solved.