\left. \begin{array} { l } { f {(x)} = -4 x - 4 }\\ { g = f {(-\frac{1}{5})} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { \text{Solve for } s \text{ where} } \\ { s = r } \end{array} \right.
Solve for f, x, g, h, j, k, l, m, n, o, p, q, r, s
s=i
Share
Copied to clipboard
h=i
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
i=g
Consider the third equation. Insert the known values of variables into the equation.
g=i
Swap sides so that all variable terms are on the left hand side.
i=f\left(-\frac{1}{5}\right)
Consider the second equation. Insert the known values of variables into the equation.
-5i=f
Multiply both sides by -5, the reciprocal of -\frac{1}{5}.
f=-5i
Swap sides so that all variable terms are on the left hand side.
-5ix=-4x-4
Consider the first equation. Insert the known values of variables into the equation.
-5ix+4x=-4
Add 4x to both sides.
\left(4-5i\right)x=-4
Combine -5ix and 4x to get \left(4-5i\right)x.
x=\frac{-4}{4-5i}
Divide both sides by 4-5i.
x=\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
Multiply both numerator and denominator of \frac{-4}{4-5i} by the complex conjugate of the denominator, 4+5i.
x=\frac{-16-20i}{41}
Do the multiplications in \frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}.
x=-\frac{16}{41}-\frac{20}{41}i
Divide -16-20i by 41 to get -\frac{16}{41}-\frac{20}{41}i.
f=-5i x=-\frac{16}{41}-\frac{20}{41}i g=i h=i j=i k=i l=i m=i n=i o=i p=i q=i r=i s=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}