Solve for f, x, g, h, j, k, l, m, n
n=i
Share
Copied to clipboard
h=i
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
i=g
Consider the third equation. Insert the known values of variables into the equation.
g=i
Swap sides so that all variable terms are on the left hand side.
i=f\times 3
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{3}=f
Divide both sides by 3.
\frac{1}{3}i=f
Divide i by 3 to get \frac{1}{3}i.
f=\frac{1}{3}i
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}ix=x+3
Consider the first equation. Insert the known values of variables into the equation.
\frac{1}{3}ix-x=3
Subtract x from both sides.
\left(-1+\frac{1}{3}i\right)x=3
Combine \frac{1}{3}ix and -x to get \left(-1+\frac{1}{3}i\right)x.
x=\frac{3}{-1+\frac{1}{3}i}
Divide both sides by -1+\frac{1}{3}i.
x=\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}
Multiply both numerator and denominator of \frac{3}{-1+\frac{1}{3}i} by the complex conjugate of the denominator, -1-\frac{1}{3}i.
x=\frac{-3-i}{\frac{10}{9}}
Do the multiplications in \frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}.
x=-\frac{27}{10}-\frac{9}{10}i
Divide -3-i by \frac{10}{9} to get -\frac{27}{10}-\frac{9}{10}i.
f=\frac{1}{3}i x=-\frac{27}{10}-\frac{9}{10}i g=i h=i j=i k=i l=i m=i n=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}