\left. \begin{array} { l } { f {(t)} = \frac{3 t + 3}{5} }\\ { g = f {(5)} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { \text{Solve for } q \text{ where} } \\ { q = p } \end{array} \right.
Solve for f, t, g, h, j, k, l, m, n, o, p, q
q=i
Share
Copied to clipboard
h=i
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
i=g
Consider the third equation. Insert the known values of variables into the equation.
g=i
Swap sides so that all variable terms are on the left hand side.
i=f\times 5
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{5}=f
Divide both sides by 5.
\frac{1}{5}i=f
Divide i by 5 to get \frac{1}{5}i.
f=\frac{1}{5}i
Swap sides so that all variable terms are on the left hand side.
\frac{1}{5}it=\frac{3t+3}{5}
Consider the first equation. Insert the known values of variables into the equation.
it=3t+3
Multiply both sides of the equation by 5.
it-3t=3
Subtract 3t from both sides.
\left(-3+i\right)t=3
Combine it and -3t to get \left(-3+i\right)t.
t=\frac{3}{-3+i}
Divide both sides by -3+i.
t=\frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
Multiply both numerator and denominator of \frac{3}{-3+i} by the complex conjugate of the denominator, -3-i.
t=\frac{-9-3i}{10}
Do the multiplications in \frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}.
t=-\frac{9}{10}-\frac{3}{10}i
Divide -9-3i by 10 to get -\frac{9}{10}-\frac{3}{10}i.
f=\frac{1}{5}i t=-\frac{9}{10}-\frac{3}{10}i g=i h=i j=i k=i l=i m=i n=i o=i p=i q=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}