Solve for f, x, g, h, j, k, l, m
k = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
l=i
m=3i
Share
Copied to clipboard
f=\frac{5}{3}
Consider the first equation. Divide both sides by 3.
h=\frac{5}{3}
Consider the third equation. Insert the known values of variables into the equation.
g=i
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
j=3i
Consider the fifth equation. Insert the known values of variables into the equation.
k=\frac{5}{3}
Consider the equation (6). Insert the known values of variables into the equation.
m=3i
Consider the equation (8). Insert the known values of variables into the equation.
2\times \frac{5}{3}x-ix=4
Consider the second equation. Insert the known values of variables into the equation.
\frac{10}{3}x-ix=4
Multiply 2 and \frac{5}{3} to get \frac{10}{3}.
\left(\frac{10}{3}-i\right)x=4
Combine \frac{10}{3}x and -ix to get \left(\frac{10}{3}-i\right)x.
x=\frac{4}{\frac{10}{3}-i}
Divide both sides by \frac{10}{3}-i.
x=\frac{4\left(\frac{10}{3}+i\right)}{\left(\frac{10}{3}-i\right)\left(\frac{10}{3}+i\right)}
Multiply both numerator and denominator of \frac{4}{\frac{10}{3}-i} by the complex conjugate of the denominator, \frac{10}{3}+i.
x=\frac{\frac{40}{3}+4i}{\frac{109}{9}}
Do the multiplications in \frac{4\left(\frac{10}{3}+i\right)}{\left(\frac{10}{3}-i\right)\left(\frac{10}{3}+i\right)}.
x=\frac{120}{109}+\frac{36}{109}i
Divide \frac{40}{3}+4i by \frac{109}{9} to get \frac{120}{109}+\frac{36}{109}i.
f=\frac{5}{3} x=\frac{120}{109}+\frac{36}{109}i g=i h=\frac{5}{3} j=3i k=\frac{5}{3} l=i m=3i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}