Solve for a, b, c, d
d=5\sqrt{2545}\approx 252.239965113
Share
Copied to clipboard
c=\sqrt{60^{2}+245^{2}}
Consider the third equation. Insert the known values of variables into the equation.
c=\sqrt{3600+245^{2}}
Calculate 60 to the power of 2 and get 3600.
c=\sqrt{3600+60025}
Calculate 245 to the power of 2 and get 60025.
c=\sqrt{63625}
Add 3600 and 60025 to get 63625.
c=5\sqrt{2545}
Factor 63625=5^{2}\times 2545. Rewrite the square root of the product \sqrt{5^{2}\times 2545} as the product of square roots \sqrt{5^{2}}\sqrt{2545}. Take the square root of 5^{2}.
d=5\sqrt{2545}
Consider the fourth equation. Insert the known values of variables into the equation.
a=60 b=245 c=5\sqrt{2545} d=5\sqrt{2545}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}