Solve for a, b, c, d
d=-3
Share
Copied to clipboard
c=\left(2-1\right)\left(2-1\right)+\left(2-2\left(-1\right)\right)\left(2+3\left(-1\right)\right)
Consider the third equation. Insert the known values of variables into the equation.
c=\left(2-1\right)^{2}+\left(2-2\left(-1\right)\right)\left(2+3\left(-1\right)\right)
Multiply 2-1 and 2-1 to get \left(2-1\right)^{2}.
c=1^{2}+\left(2-2\left(-1\right)\right)\left(2+3\left(-1\right)\right)
Subtract 1 from 2 to get 1.
c=1+\left(2-2\left(-1\right)\right)\left(2+3\left(-1\right)\right)
Calculate 1 to the power of 2 and get 1.
c=1+\left(2+2\right)\left(2+3\left(-1\right)\right)
Multiply -2 and -1 to get 2.
c=1+4\left(2+3\left(-1\right)\right)
Add 2 and 2 to get 4.
c=1+4\left(2-3\right)
Multiply 3 and -1 to get -3.
c=1+4\left(-1\right)
Subtract 3 from 2 to get -1.
c=1-4
Multiply 4 and -1 to get -4.
c=-3
Subtract 4 from 1 to get -3.
d=-3
Consider the fourth equation. Insert the known values of variables into the equation.
a=2 b=-1 c=-3 d=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}