Solve for a, b, c
c=1149984\sqrt{2}\approx 1626322.969312062
Share
Copied to clipboard
a=121\times 11\sqrt{8}\sqrt{3^{2}}\sqrt{12^{4}}
Consider the first equation. Multiply 11 and 11 to get 121.
a=1331\sqrt{8}\sqrt{3^{2}}\sqrt{12^{4}}
Multiply 121 and 11 to get 1331.
a=1331\times 2\sqrt{2}\sqrt{3^{2}}\sqrt{12^{4}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
a=2662\sqrt{2}\sqrt{3^{2}}\sqrt{12^{4}}
Multiply 1331 and 2 to get 2662.
a=2662\sqrt{2}\sqrt{9}\sqrt{12^{4}}
Calculate 3 to the power of 2 and get 9.
a=2662\sqrt{2}\times 3\sqrt{12^{4}}
Calculate the square root of 9 and get 3.
a=7986\sqrt{2}\sqrt{12^{4}}
Multiply 2662 and 3 to get 7986.
a=7986\sqrt{2}\sqrt{20736}
Calculate 12 to the power of 4 and get 20736.
a=7986\sqrt{2}\times 144
Calculate the square root of 20736 and get 144.
a=1149984\sqrt{2}
Multiply 7986 and 144 to get 1149984.
b=1149984\sqrt{2}
Consider the second equation. Insert the known values of variables into the equation.
c=1149984\sqrt{2}
Consider the third equation. Insert the known values of variables into the equation.
a=1149984\sqrt{2} b=1149984\sqrt{2} c=1149984\sqrt{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}