\left. \begin{array} { l } { a = {(-\frac{1}{10} - \frac{1}{5} i)} }\\ { j = {(-2 + 4 i)} a }\\ { k = {(28 - 96 i)} }\\ { l = j }\\ { m = k }\\ { n = l }\\ { o = m }\\ { p = n }\\ { q = o }\\ { r = p }\\ { s = q }\\ { \text{Solve for } t,u \text{ where} } \\ { t = r }\\ { u = s } \end{array} \right.
Solve for a, j, k, l, m, n, o, p, q, r, s, t, u
t=1
u=28-96i
Share
Copied to clipboard
j=\left(-2+4i\right)\left(-\frac{1}{10}-\frac{1}{5}i\right)
Consider the second equation. Insert the known values of variables into the equation.
j=1
Multiply -2+4i and -\frac{1}{10}-\frac{1}{5}i to get 1.
l=1
Consider the fourth equation. Insert the known values of variables into the equation.
n=1
Consider the equation (6). Insert the known values of variables into the equation.
p=1
Consider the equation (8). Insert the known values of variables into the equation.
r=1
Consider the equation (10). Insert the known values of variables into the equation.
t=1
Consider the equation (12). Insert the known values of variables into the equation.
a=-\frac{1}{10}-\frac{1}{5}i j=1 k=28-96i l=1 m=28-96i n=1 o=28-96i p=1 q=28-96i r=1 s=28-96i t=1 u=28-96i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}