Solve for M, B, C, a, b
b=16
Share
Copied to clipboard
2M+M=3
Consider the first equation. Combine M and M to get 2M.
3M=3
Combine 2M and M to get 3M.
M=\frac{3}{3}
Divide both sides by 3.
M=1
Divide 3 by 3 to get 1.
1+B+B=18
Consider the second equation. Insert the known values of variables into the equation.
1+2B=18
Combine B and B to get 2B.
2B=18-1
Subtract 1 from both sides.
2B=17
Subtract 1 from 18 to get 17.
B=\frac{17}{2}
Divide both sides by 2.
\frac{17}{2}-C=2
Consider the third equation. Insert the known values of variables into the equation.
-C=2-\frac{17}{2}
Subtract \frac{17}{2} from both sides.
-C=-\frac{13}{2}
Subtract \frac{17}{2} from 2 to get -\frac{13}{2}.
C=\frac{-\frac{13}{2}}{-1}
Divide both sides by -1.
C=\frac{-13}{2\left(-1\right)}
Express \frac{-\frac{13}{2}}{-1} as a single fraction.
C=\frac{-13}{-2}
Multiply 2 and -1 to get -2.
C=\frac{13}{2}
Fraction \frac{-13}{-2} can be simplified to \frac{13}{2} by removing the negative sign from both the numerator and the denominator.
a=\frac{13}{2}+1+\frac{17}{2}
Consider the fourth equation. Insert the known values of variables into the equation.
a=\frac{15}{2}+\frac{17}{2}
Add \frac{13}{2} and 1 to get \frac{15}{2}.
a=16
Add \frac{15}{2} and \frac{17}{2} to get 16.
b=16
Consider the fifth equation. Insert the known values of variables into the equation.
M=1 B=\frac{17}{2} C=\frac{13}{2} a=16 b=16
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}