Solve for A, a, b
b=6
Share
Copied to clipboard
A=-20+13+15+19
Consider the first equation. The opposite of -13 is 13.
A=-7+15+19
Add -20 and 13 to get -7.
A=8+19
Add -7 and 15 to get 8.
A=27
Add 8 and 19 to get 27.
a=-9-\left(-3-12\right)
Consider the second equation. Add -11 and 8 to get -3.
a=-9-\left(-15\right)
Subtract 12 from -3 to get -15.
a=-9+15
The opposite of -15 is 15.
a=6
Add -9 and 15 to get 6.
b=6
Consider the third equation. Insert the known values of variables into the equation.
A=27 a=6 b=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}