Solve for A, B, a, b, c, d (complex solution)
A=90-B
B\in \cup n_{1},\pi n_{1}-\frac{169\pi }{12}+45
n_{1}\in \mathrm{Z}
a=90-B
b\in \cup n_{1},\pi n_{1}-\frac{169\pi }{12}+45
B=\pi n_{1}-\frac{169\pi }{12}+45
n_{1}\in \mathrm{Z}
c\in \cup n_{1},\cup n_{1},\cup n_{1},\pi n_{1}-\frac{167\pi }{12}+45
B=-\pi n_{1}+\frac{167\pi }{12}+45
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=\pi n_{1}-\frac{169\pi }{12}+45\text{, }B=n_{1}\pi +45+\left(-\frac{169}{12}\right)\pi \right)\text{, }n_{1}\in \mathrm{Z}\text{, }d\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\pi n_{1}-\frac{169\pi }{12}+45\text{, }b=\pi n_{1}-\frac{169\pi }{12}+45\text{ and }B=\pi n_{1}-\frac{169\pi }{12}+45\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }B=\pi n_{1}-\frac{169\pi }{12}+45\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }c=\pi n_{1}-\frac{167\pi }{12}+45\text{, }B=45+\left(-1\right)n_{1}\pi +\frac{167}{12}\pi \right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=n_{1}\pi +45+\left(-\frac{169}{12}\right)\pi \text{, }B=n_{1}\pi +45+\left(-\frac{169}{12}\right)\pi \right)\right)\text{, }n_{1}\in \mathrm{Z}
Solve for A, B, a, b, c, d
A=\pi n_{1}-\frac{167\pi }{12}+45\text{, }n_{1}\in \mathrm{Z}\text{, }B=\pi n_{1}-\frac{169\pi }{12}+45\text{, }n_{1}\in \mathrm{Z}\text{, }a=\pi n_{1}-\frac{167\pi }{12}+45\text{, }n_{1}\in \mathrm{Z}\text{, }b=\pi n_{1}-\frac{169\pi }{12}+45\text{, }n_{1}\in \mathrm{Z}\text{, }c=\pi n_{1}-\frac{167\pi }{12}+45\text{, }n_{1}\in \mathrm{Z}\text{, }d=\pi n_{1}-\frac{169\pi }{12}+45\text{, }n_{1}\in \mathrm{Z}
A=\pi n_{2}-\frac{163\pi }{12}+45\text{, }n_{2}\in \mathrm{Z}\text{, }B=\pi n_{2}-\frac{161\pi }{12}+45\text{, }n_{2}\in \mathrm{Z}\text{, }a=\pi n_{2}-\frac{163\pi }{12}+45\text{, }n_{2}\in \mathrm{Z}\text{, }b=\pi n_{2}-\frac{161\pi }{12}+45\text{, }n_{2}\in \mathrm{Z}\text{, }c=\pi n_{2}-\frac{163\pi }{12}+45\text{, }n_{2}\in \mathrm{Z}\text{, }d=\pi n_{2}-\frac{161\pi }{12}+45\text{, }n_{2}\in \mathrm{Z}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}