Solve for k, l, m
m=1
Share
Copied to clipboard
90+k^{2}+18k=k^{2}
Consider the first equation. Add 9 and 81 to get 90.
90+k^{2}+18k-k^{2}=0
Subtract k^{2} from both sides.
90+18k=0
Combine k^{2} and -k^{2} to get 0.
18k=-90
Subtract 90 from both sides. Anything subtracted from zero gives its negation.
k=\frac{-90}{18}
Divide both sides by 18.
k=-5
Divide -90 by 18 to get -5.
l=-4+1-5+9
Consider the second equation. Insert the known values of variables into the equation.
l=-3-5+9
Add -4 and 1 to get -3.
l=-8+9
Subtract 5 from -3 to get -8.
l=1
Add -8 and 9 to get 1.
m=1
Consider the third equation. Insert the known values of variables into the equation.
k=-5 l=1 m=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}