Solve for x, y, z
z = -\frac{7}{4} = -1\frac{3}{4} = -1.75
Share
Copied to clipboard
16x-24=-\frac{2}{3}\left(2x-5\right)+0
Consider the first equation. Use the distributive property to multiply 8 by 2x-3.
16x-24=-\frac{4}{3}x+\frac{10}{3}+0
Use the distributive property to multiply -\frac{2}{3} by 2x-5.
16x-24=-\frac{4}{3}x+\frac{10}{3}
Add \frac{10}{3} and 0 to get \frac{10}{3}.
16x-24+\frac{4}{3}x=\frac{10}{3}
Add \frac{4}{3}x to both sides.
\frac{52}{3}x-24=\frac{10}{3}
Combine 16x and \frac{4}{3}x to get \frac{52}{3}x.
\frac{52}{3}x=\frac{10}{3}+24
Add 24 to both sides.
\frac{52}{3}x=\frac{82}{3}
Add \frac{10}{3} and 24 to get \frac{82}{3}.
x=\frac{82}{3}\times \frac{3}{52}
Multiply both sides by \frac{3}{52}, the reciprocal of \frac{52}{3}.
x=\frac{41}{26}
Multiply \frac{82}{3} and \frac{3}{52} to get \frac{41}{26}.
y=-\frac{4+3}{4}-0
Consider the second equation. Multiply 1 and 4 to get 4.
y=-\frac{7}{4}-0
Add 4 and 3 to get 7.
y=-\frac{7}{4}
Subtract 0 from -\frac{7}{4} to get -\frac{7}{4}.
z=-\frac{7}{4}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{41}{26} y=-\frac{7}{4} z=-\frac{7}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}