Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

16x-24=-\frac{2}{3}\left(2x-5\right)+0
Consider the first equation. Use the distributive property to multiply 8 by 2x-3.
16x-24=-\frac{4}{3}x+\frac{10}{3}+0
Use the distributive property to multiply -\frac{2}{3} by 2x-5.
16x-24=-\frac{4}{3}x+\frac{10}{3}
Add \frac{10}{3} and 0 to get \frac{10}{3}.
16x-24+\frac{4}{3}x=\frac{10}{3}
Add \frac{4}{3}x to both sides.
\frac{52}{3}x-24=\frac{10}{3}
Combine 16x and \frac{4}{3}x to get \frac{52}{3}x.
\frac{52}{3}x=\frac{10}{3}+24
Add 24 to both sides.
\frac{52}{3}x=\frac{82}{3}
Add \frac{10}{3} and 24 to get \frac{82}{3}.
x=\frac{82}{3}\times \frac{3}{52}
Multiply both sides by \frac{3}{52}, the reciprocal of \frac{52}{3}.
x=\frac{41}{26}
Multiply \frac{82}{3} and \frac{3}{52} to get \frac{41}{26}.
y=-\frac{4+3}{4}-0
Consider the second equation. Multiply 1 and 4 to get 4.
y=-\frac{7}{4}-0
Add 4 and 3 to get 7.
y=-\frac{7}{4}
Subtract 0 from -\frac{7}{4} to get -\frac{7}{4}.
z=-\frac{7}{4}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{41}{26} y=-\frac{7}{4} z=-\frac{7}{4}
The system is now solved.