Solve for x, y, z, a, b
b = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Share
Copied to clipboard
6x-4=-2x+8
Consider the first equation. Combine 7x and -x to get 6x.
6x-4+2x=8
Add 2x to both sides.
8x-4=8
Combine 6x and 2x to get 8x.
8x=8+4
Add 4 to both sides.
8x=12
Add 8 and 4 to get 12.
x=\frac{12}{8}
Divide both sides by 8.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
y=-3\times \frac{3}{2}
Consider the second equation. Insert the known values of variables into the equation.
y=-\frac{9}{2}
Multiply -3 and \frac{3}{2} to get -\frac{9}{2}.
z=-\frac{9}{2}
Consider the third equation. Insert the known values of variables into the equation.
a=-\frac{9}{2}
Consider the fourth equation. Insert the known values of variables into the equation.
b=-\frac{9}{2}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\frac{3}{2} y=-\frac{9}{2} z=-\frac{9}{2} a=-\frac{9}{2} b=-\frac{9}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}