Solve for x, y, z
z = \frac{74}{7} = 10\frac{4}{7} \approx 10.571428571
Share
Copied to clipboard
7x+4=0
Consider the first equation. Calculate 2 to the power of 2 and get 4.
7x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x=-\frac{4}{7}
Divide both sides by 7.
y=\left(7\left(-\frac{4}{7}\right)+2\right)\left(11\left(-\frac{4}{7}\right)+1\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\left(-4+2\right)\left(11\left(-\frac{4}{7}\right)+1\right)
Multiply 7 and -\frac{4}{7} to get -4.
y=-2\left(11\left(-\frac{4}{7}\right)+1\right)
Add -4 and 2 to get -2.
y=-2\left(-\frac{44}{7}+1\right)
Multiply 11 and -\frac{4}{7} to get -\frac{44}{7}.
y=-2\left(-\frac{37}{7}\right)
Add -\frac{44}{7} and 1 to get -\frac{37}{7}.
y=\frac{74}{7}
Multiply -2 and -\frac{37}{7} to get \frac{74}{7}.
z=\frac{74}{7}
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{4}{7} y=\frac{74}{7} z=\frac{74}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}