Solve for x, y, z, a, b, c
c = \frac{25}{6} = 4\frac{1}{6} \approx 4.166666667
Share
Copied to clipboard
6\times 8-6y=23
Consider the first equation. Insert the known values of variables into the equation.
48-6y=23
Multiply 6 and 8 to get 48.
-6y=23-48
Subtract 48 from both sides.
-6y=-25
Subtract 48 from 23 to get -25.
y=\frac{-25}{-6}
Divide both sides by -6.
y=\frac{25}{6}
Fraction \frac{-25}{-6} can be simplified to \frac{25}{6} by removing the negative sign from both the numerator and the denominator.
z=\frac{25}{6}
Consider the third equation. Insert the known values of variables into the equation.
a=\frac{25}{6}
Consider the fourth equation. Insert the known values of variables into the equation.
b=\frac{25}{6}
Consider the fifth equation. Insert the known values of variables into the equation.
c=\frac{25}{6}
Consider the equation (6). Insert the known values of variables into the equation.
x=8 y=\frac{25}{6} z=\frac{25}{6} a=\frac{25}{6} b=\frac{25}{6} c=\frac{25}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}