Solve for x, y, z
z=7
Share
Copied to clipboard
6x-36+4x=106
Consider the first equation. Use the distributive property to multiply -4 by 9-x.
10x-36=106
Combine 6x and 4x to get 10x.
10x=106+36
Add 36 to both sides.
10x=142
Add 106 and 36 to get 142.
x=\frac{142}{10}
Divide both sides by 10.
x=\frac{71}{5}
Reduce the fraction \frac{142}{10} to lowest terms by extracting and canceling out 2.
x=\frac{71}{5} y=7 z=7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}