Solve for u, v, w
w=0
Share
Copied to clipboard
6u-\frac{1}{2}u+2=u+\frac{3}{10}
Consider the first equation. To find the opposite of \frac{1}{2}u-2, find the opposite of each term.
\frac{11}{2}u+2=u+\frac{3}{10}
Combine 6u and -\frac{1}{2}u to get \frac{11}{2}u.
\frac{11}{2}u+2-u=\frac{3}{10}
Subtract u from both sides.
\frac{9}{2}u+2=\frac{3}{10}
Combine \frac{11}{2}u and -u to get \frac{9}{2}u.
\frac{9}{2}u=\frac{3}{10}-2
Subtract 2 from both sides.
\frac{9}{2}u=-\frac{17}{10}
Subtract 2 from \frac{3}{10} to get -\frac{17}{10}.
u=-\frac{17}{10}\times \frac{2}{9}
Multiply both sides by \frac{2}{9}, the reciprocal of \frac{9}{2}.
u=-\frac{17}{45}
Multiply -\frac{17}{10} and \frac{2}{9} to get -\frac{17}{45}.
u=-\frac{17}{45} v=0 w=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}