Solve for x, y, z
z=2
Share
Copied to clipboard
6\left(0x-1\times 4\right)=-3\times 9\left(2x-0\times 9\right)
Consider the first equation. Multiply 0 and 4 to get 0.
6\left(0-1\times 4\right)=-3\times 9\left(2x-0\times 9\right)
Anything times zero gives zero.
6\left(0-4\right)=-3\times 9\left(2x-0\times 9\right)
Multiply 1 and 4 to get 4.
6\left(-4\right)=-3\times 9\left(2x-0\times 9\right)
Subtract 4 from 0 to get -4.
-24=-3\times 9\left(2x-0\times 9\right)
Multiply 6 and -4 to get -24.
-24=-27\left(2x-0\times 9\right)
Multiply -3 and 9 to get -27.
-24=-27\left(2x-0\right)
Multiply 0 and 9 to get 0.
-27\left(2x-0\right)=-24
Swap sides so that all variable terms are on the left hand side.
2x-0=\frac{-24}{-27}
Divide both sides by -27.
2x-0=\frac{8}{9}
Reduce the fraction \frac{-24}{-27} to lowest terms by extracting and canceling out -3.
2x=\frac{8}{9}
Reorder the terms.
x=\frac{\frac{8}{9}}{2}
Divide both sides by 2.
x=\frac{8}{9\times 2}
Express \frac{\frac{8}{9}}{2} as a single fraction.
x=\frac{8}{18}
Multiply 9 and 2 to get 18.
x=\frac{4}{9}
Reduce the fraction \frac{8}{18} to lowest terms by extracting and canceling out 2.
x=\frac{4}{9} y=2 z=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}