Solve for x, y, z
z = \frac{62}{7} = 8\frac{6}{7} \approx 8.857142857
Share
Copied to clipboard
5x+10+3\left(2x-3\right)=48+4\left(x+2\right)+7
Consider the first equation. Use the distributive property to multiply 5 by x+2.
5x+10+6x-9=48+4\left(x+2\right)+7
Use the distributive property to multiply 3 by 2x-3.
11x+10-9=48+4\left(x+2\right)+7
Combine 5x and 6x to get 11x.
11x+1=48+4\left(x+2\right)+7
Subtract 9 from 10 to get 1.
11x+1=48+4x+8+7
Use the distributive property to multiply 4 by x+2.
11x+1=56+4x+7
Add 48 and 8 to get 56.
11x+1=63+4x
Add 56 and 7 to get 63.
11x+1-4x=63
Subtract 4x from both sides.
7x+1=63
Combine 11x and -4x to get 7x.
7x=63-1
Subtract 1 from both sides.
7x=62
Subtract 1 from 63 to get 62.
x=\frac{62}{7}
Divide both sides by 7.
y=\frac{62}{7}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{62}{7}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{62}{7} y=\frac{62}{7} z=\frac{62}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}