Solve for x, y, z
z = -\frac{38503}{175} = -220\frac{3}{175} \approx -220.017142857
Share
Copied to clipboard
35x-265+6=3
Consider the first equation. Use the distributive property to multiply 5 by 7x-53.
35x-259=3
Add -265 and 6 to get -259.
35x=3+259
Add 259 to both sides.
35x=262
Add 3 and 259 to get 262.
x=\frac{262}{35}
Divide both sides by 35.
y=\left(-7\times \frac{262}{35}-3\right)\left(-11+2\times \frac{262}{35}\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\left(-\frac{262}{5}-3\right)\left(-11+2\times \frac{262}{35}\right)
Multiply -7 and \frac{262}{35} to get -\frac{262}{5}.
y=-\frac{277}{5}\left(-11+2\times \frac{262}{35}\right)
Subtract 3 from -\frac{262}{5} to get -\frac{277}{5}.
y=-\frac{277}{5}\left(-11+\frac{524}{35}\right)
Multiply 2 and \frac{262}{35} to get \frac{524}{35}.
y=-\frac{277}{5}\times \frac{139}{35}
Add -11 and \frac{524}{35} to get \frac{139}{35}.
y=-\frac{38503}{175}
Multiply -\frac{277}{5} and \frac{139}{35} to get -\frac{38503}{175}.
z=-\frac{38503}{175}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{262}{35} y=-\frac{38503}{175} z=-\frac{38503}{175}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}