Solve for x, y, z, a, b
a=0
b=-9
Share
Copied to clipboard
5=20-x-24
Consider the first equation. To find the opposite of x+24, find the opposite of each term.
5=-4-x
Subtract 24 from 20 to get -4.
-4-x=5
Swap sides so that all variable terms are on the left hand side.
-x=5+4
Add 4 to both sides.
-x=9
Add 5 and 4 to get 9.
x=-9
Divide both sides by -1.
z=-9
Consider the third equation. Insert the known values of variables into the equation.
b=-9
Consider the fifth equation. Insert the known values of variables into the equation.
x=-9 y=0 z=-9 a=0 b=-9
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}