Solve for x, y, z
z=2
Share
Copied to clipboard
5+6x=\sqrt{25}\left(\frac{33}{6}-\frac{5}{4}\right)
Consider the first equation. Combine 13x and -7x to get 6x.
5+6x=5\left(\frac{33}{6}-\frac{5}{4}\right)
Calculate the square root of 25 and get 5.
5+6x=5\left(\frac{11}{2}-\frac{5}{4}\right)
Reduce the fraction \frac{33}{6} to lowest terms by extracting and canceling out 3.
5+6x=5\times \frac{17}{4}
Subtract \frac{5}{4} from \frac{11}{2} to get \frac{17}{4}.
5+6x=\frac{85}{4}
Multiply 5 and \frac{17}{4} to get \frac{85}{4}.
6x=\frac{85}{4}-5
Subtract 5 from both sides.
6x=\frac{65}{4}
Subtract 5 from \frac{85}{4} to get \frac{65}{4}.
x=\frac{\frac{65}{4}}{6}
Divide both sides by 6.
x=\frac{65}{4\times 6}
Express \frac{\frac{65}{4}}{6} as a single fraction.
x=\frac{65}{24}
Multiply 4 and 6 to get 24.
x=\frac{65}{24} y=2 z=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}