Solve for x, y, z, a
a=48.5
Share
Copied to clipboard
y=\frac{1.8}{6}
Consider the second equation. Divide both sides by 6.
y=\frac{18}{60}
Expand \frac{1.8}{6} by multiplying both numerator and the denominator by 10.
y=\frac{3}{10}
Reduce the fraction \frac{18}{60} to lowest terms by extracting and canceling out 6.
4x-3\times \frac{3}{10}=9
Consider the first equation. Insert the known values of variables into the equation.
4x-\frac{9}{10}=9
Multiply -3 and \frac{3}{10} to get -\frac{9}{10}.
4x=9+\frac{9}{10}
Add \frac{9}{10} to both sides.
4x=\frac{99}{10}
Add 9 and \frac{9}{10} to get \frac{99}{10}.
x=\frac{\frac{99}{10}}{4}
Divide both sides by 4.
x=\frac{99}{10\times 4}
Express \frac{\frac{99}{10}}{4} as a single fraction.
x=\frac{99}{40}
Multiply 10 and 4 to get 40.
z=20\times \frac{99}{40}-1
Consider the third equation. Insert the known values of variables into the equation.
z=\frac{99}{2}-1
Multiply 20 and \frac{99}{40} to get \frac{99}{2}.
z=\frac{97}{2}
Subtract 1 from \frac{99}{2} to get \frac{97}{2}.
a=\frac{97}{2}
Consider the fourth equation. Insert the known values of variables into the equation.
x=\frac{99}{40} y=\frac{3}{10} z=\frac{97}{2} a=\frac{97}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}