Solve for x, y, z
z = \frac{354}{83} = 4\frac{22}{83} \approx 4.265060241
Share
Copied to clipboard
4x-\frac{1}{9}\left(25x+9-72x\right)=15
Consider the first equation. Use the distributive property to multiply -9 by -1+8x.
4x-\frac{1}{9}\left(-47x+9\right)=15
Combine 25x and -72x to get -47x.
4x+\frac{47}{9}x-1=15
Use the distributive property to multiply -\frac{1}{9} by -47x+9.
\frac{83}{9}x-1=15
Combine 4x and \frac{47}{9}x to get \frac{83}{9}x.
\frac{83}{9}x=15+1
Add 1 to both sides.
\frac{83}{9}x=16
Add 15 and 1 to get 16.
x=16\times \frac{9}{83}
Multiply both sides by \frac{9}{83}, the reciprocal of \frac{83}{9}.
x=\frac{144}{83}
Multiply 16 and \frac{9}{83} to get \frac{144}{83}.
y=9-\frac{144}{83}-3
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{603}{83}-3
Subtract \frac{144}{83} from 9 to get \frac{603}{83}.
y=\frac{354}{83}
Subtract 3 from \frac{603}{83} to get \frac{354}{83}.
z=\frac{354}{83}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{144}{83} y=\frac{354}{83} z=\frac{354}{83}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}