Solve for x, y, z
z=44
Share
Copied to clipboard
4-5\left(8x-16\right)=40-\left(3x-1\times 4\right)
Consider the first equation. Multiply 1 and 5 to get 5.
4-40x+80=40-\left(3x-1\times 4\right)
Use the distributive property to multiply -5 by 8x-16.
84-40x=40-\left(3x-1\times 4\right)
Add 4 and 80 to get 84.
84-40x=40-\left(3x-4\right)
Multiply 1 and 4 to get 4.
84-40x=40-3x+4
To find the opposite of 3x-4, find the opposite of each term.
84-40x=44-3x
Add 40 and 4 to get 44.
84-40x+3x=44
Add 3x to both sides.
84-37x=44
Combine -40x and 3x to get -37x.
-37x=44-84
Subtract 84 from both sides.
-37x=-40
Subtract 84 from 44 to get -40.
x=\frac{-40}{-37}
Divide both sides by -37.
x=\frac{40}{37}
Fraction \frac{-40}{-37} can be simplified to \frac{40}{37} by removing the negative sign from both the numerator and the denominator.
x=\frac{40}{37} y=44 z=44
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}