Solve for x, y, z, a, b, c, d
d=3
Share
Copied to clipboard
4x+12=6\left(x-2\right)
Consider the first equation. Use the distributive property to multiply 4 by x+3.
4x+12=6x-12
Use the distributive property to multiply 6 by x-2.
4x+12-6x=-12
Subtract 6x from both sides.
-2x+12=-12
Combine 4x and -6x to get -2x.
-2x=-12-12
Subtract 12 from both sides.
-2x=-24
Subtract 12 from -12 to get -24.
x=\frac{-24}{-2}
Divide both sides by -2.
x=12
Divide -24 by -2 to get 12.
x=12 y=3 z=3 a=3 b=3 c=3 d=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}