Solve for x, y, z, a
a = -\frac{157}{15} = -10\frac{7}{15} \approx -10.466666667
Share
Copied to clipboard
3000-x\times 360=200\times 35.64
Consider the first equation. Multiply 2 and 100 to get 200.
3000-x\times 360=7128
Multiply 200 and 35.64 to get 7128.
3000-360x=7128
Multiply -1 and 360 to get -360.
-360x=7128-3000
Subtract 3000 from both sides.
-360x=4128
Subtract 3000 from 7128 to get 4128.
x=\frac{4128}{-360}
Divide both sides by -360.
x=-\frac{172}{15}
Reduce the fraction \frac{4128}{-360} to lowest terms by extracting and canceling out 24.
y=1-\frac{172}{15}
Consider the second equation. Insert the known values of variables into the equation.
y=-\frac{157}{15}
Subtract \frac{172}{15} from 1 to get -\frac{157}{15}.
z=-\frac{157}{15}
Consider the third equation. Insert the known values of variables into the equation.
a=-\frac{157}{15}
Consider the fourth equation. Insert the known values of variables into the equation.
x=-\frac{172}{15} y=-\frac{157}{15} z=-\frac{157}{15} a=-\frac{157}{15}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}