Skip to main content
Solve for x, y, z, a, b
Tick mark Image

Similar Problems from Web Search

Share

3x=100+1
Consider the first equation. Add 1 to both sides.
3x=101
Add 100 and 1 to get 101.
x=\frac{101}{3}
Divide both sides by 3.
y+\frac{101}{3}-1=97
Consider the second equation. Insert the known values of variables into the equation.
y+\frac{98}{3}=97
Subtract 1 from \frac{101}{3} to get \frac{98}{3}.
y=97-\frac{98}{3}
Subtract \frac{98}{3} from both sides.
y=\frac{193}{3}
Subtract \frac{98}{3} from 97 to get \frac{193}{3}.
z-\frac{101}{3}\times \frac{193}{3}=1
Consider the third equation. Insert the known values of variables into the equation.
z-\frac{19493}{9}=1
Multiply -\frac{101}{3} and \frac{193}{3} to get -\frac{19493}{9}.
z=1+\frac{19493}{9}
Add \frac{19493}{9} to both sides.
z=\frac{19502}{9}
Add 1 and \frac{19493}{9} to get \frac{19502}{9}.
a=\frac{19502}{9}-\frac{101}{3}+\frac{193}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
a=\frac{19199}{9}+\frac{193}{3}
Subtract \frac{101}{3} from \frac{19502}{9} to get \frac{19199}{9}.
a=\frac{19778}{9}
Add \frac{19199}{9} and \frac{193}{3} to get \frac{19778}{9}.
b=\frac{19778}{9}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\frac{101}{3} y=\frac{193}{3} z=\frac{19502}{9} a=\frac{19778}{9} b=\frac{19778}{9}
The system is now solved.