Solve for x, y, z, a, b
b = \frac{19778}{9} = 2197\frac{5}{9} \approx 2197.555555556
Share
Copied to clipboard
3x=100+1
Consider the first equation. Add 1 to both sides.
3x=101
Add 100 and 1 to get 101.
x=\frac{101}{3}
Divide both sides by 3.
y+\frac{101}{3}-1=97
Consider the second equation. Insert the known values of variables into the equation.
y+\frac{98}{3}=97
Subtract 1 from \frac{101}{3} to get \frac{98}{3}.
y=97-\frac{98}{3}
Subtract \frac{98}{3} from both sides.
y=\frac{193}{3}
Subtract \frac{98}{3} from 97 to get \frac{193}{3}.
z-\frac{101}{3}\times \frac{193}{3}=1
Consider the third equation. Insert the known values of variables into the equation.
z-\frac{19493}{9}=1
Multiply -\frac{101}{3} and \frac{193}{3} to get -\frac{19493}{9}.
z=1+\frac{19493}{9}
Add \frac{19493}{9} to both sides.
z=\frac{19502}{9}
Add 1 and \frac{19493}{9} to get \frac{19502}{9}.
a=\frac{19502}{9}-\frac{101}{3}+\frac{193}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
a=\frac{19199}{9}+\frac{193}{3}
Subtract \frac{101}{3} from \frac{19502}{9} to get \frac{19199}{9}.
a=\frac{19778}{9}
Add \frac{19199}{9} and \frac{193}{3} to get \frac{19778}{9}.
b=\frac{19778}{9}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\frac{101}{3} y=\frac{193}{3} z=\frac{19502}{9} a=\frac{19778}{9} b=\frac{19778}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}