Solve for x, y, z, a
a = \frac{156}{7} = 22\frac{2}{7} \approx 22.285714286
Share
Copied to clipboard
11x+2x+x=24
Consider the first equation. Combine 3x and 8x to get 11x.
13x+x=24
Combine 11x and 2x to get 13x.
14x=24
Combine 13x and x to get 14x.
x=\frac{24}{14}
Divide both sides by 14.
x=\frac{12}{7}
Reduce the fraction \frac{24}{14} to lowest terms by extracting and canceling out 2.
y=13\times \frac{12}{7}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{156}{7}
Multiply 13 and \frac{12}{7} to get \frac{156}{7}.
z=\frac{156}{7}
Consider the third equation. Insert the known values of variables into the equation.
a=\frac{156}{7}
Consider the fourth equation. Insert the known values of variables into the equation.
x=\frac{12}{7} y=\frac{156}{7} z=\frac{156}{7} a=\frac{156}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}