Solve for y, z, a, b, c, d
d = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
Share
Copied to clipboard
-3y=-4-3
Consider the first equation. Subtract 3 from both sides.
-3y=-7
Subtract 3 from -4 to get -7.
y=\frac{-7}{-3}
Divide both sides by -3.
y=\frac{7}{3}
Fraction \frac{-7}{-3} can be simplified to \frac{7}{3} by removing the negative sign from both the numerator and the denominator.
z=-2\times \frac{7}{3}
Consider the second equation. Insert the known values of variables into the equation.
z=-\frac{14}{3}
Multiply -2 and \frac{7}{3} to get -\frac{14}{3}.
a=-\frac{14}{3}
Consider the third equation. Insert the known values of variables into the equation.
b=-\frac{14}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
c=-\frac{14}{3}
Consider the fifth equation. Insert the known values of variables into the equation.
d=-\frac{14}{3}
Consider the equation (6). Insert the known values of variables into the equation.
y=\frac{7}{3} z=-\frac{14}{3} a=-\frac{14}{3} b=-\frac{14}{3} c=-\frac{14}{3} d=-\frac{14}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}