Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Solve for y, z, a
a = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
View solution steps
Solution Steps
\left. \begin{array} { l } { 3 - 3 y = -4 }\\ { z = -2 y }\\ { \text{Solve for } a \text{ where} } \\ { a = z } \end{array} \right.
Consider the first equation. Subtract 3 from both sides.
-3y=-4-3
Subtract 3 from -4 to get -7.
-3y=-7
Divide both sides by -3.
y=\frac{-7}{-3}
Fraction \frac{-7}{-3} can be simplified to \frac{7}{3} by removing the negative sign from both the numerator and the denominator.
y=\frac{7}{3}
Consider the second equation. Insert the known values of variables into the equation.
z=-2\times \left(\frac{7}{3}\right)
Multiply -2 and \frac{7}{3} to get -\frac{14}{3}.
z=-\frac{14}{3}
Consider the third equation. Insert the known values of variables into the equation.
a=-\frac{14}{3}
The system is now solved.
y=\frac{7}{3} z=-\frac{14}{3} a=-\frac{14}{3}
Quiz
Algebra
5 problems similar to:
\left. \begin{array} { l } { 3 - 3 y = -4 }\\ { z = -2 y }\\ { \text{Solve for } a \text{ where} } \\ { a = z } \end{array} \right.
Similar Problems from Web Search
How to compute e^{At} with A=\left ( \begin{array}{cc} -3 & 4 \\ -4 & -3 \end{array} \right )
https://math.stackexchange.com/questions/126547/how-to-compute-eat-with-a-left-beginarraycc-3-4-4-3-end
For a solution to the second version of the question, see below. This applies to the first version of the question, where \color{red}{A=\begin{pmatrix}3 & 4 \\ -4 & -3\end{pmatrix}}. Since \text{tr}(A)=0 ...
If \displaystyle{A}={\left(\begin{array}{cc} {3}&{2}\\-{3}&-{4}\end{array}\right)} and \displaystyle{B}={\left(\begin{array}{cc} {0}&-{5}\\-{2}&{1}\end{array}\right)} , What are the matrices X ...
https://socratic.org/questions/if-a-3-2-3-4-and-b-0-5-2-1-what-is-the-matrices-x-and-y-such-that-2a-3x-b-and-3a
\displaystyle{X}={\left(\begin{array}{cc} {2}&{3}\\-\frac{{4}}{{3}}&-{3}\end{array}\right)} and \displaystyle{Y}={\left(\begin{array}{cc} -\frac{{9}}{{2}}&-{8}\\\frac{{5}}{{2}}&{7}\end{array}\right)} ...
Vectors Given that \displaystyle\vec{{{O}{P}}}={\left(\begin{array}{c} -{3}\\-{2}\end{array}\right)} , \displaystyle\vec{{{O}{Q}}}={\left(\begin{array}{c} {5}\\-{2}\end{array}\right)} and is a ...
https://socratic.org/questions/vectors-given-that-op-3-2-oq-5-2-and-t-is-a-point-on-the-line-pq-such-that-5pt-3
\displaystyle{\left({I}\right)}:\vec{{{P}{Q}}}={\left(\begin{array}{c} {8}\\{0}\end{array}\right)}. \displaystyle{\left({I}{I}\right)}:\vec{{{T}{Q}}}={\left(\begin{array}{c} \frac{{55}}{{8}}\\-\frac{{3}}{{4}}\end{array}\right)}. ...
How do you find the inverse of \displaystyle{A}= \displaystyle{\left(\begin{array}{cc} -{2}&{5}\\{6}&-{15}\\{0}&{1}\end{array}\right)} ?
https://socratic.org/questions/how-do-you-find-the-inverse-of-a-2-5-6-15-0-1
Only square matrices have inverses. Explanation: The inverse of a matrix \displaystyle{A} is a matrix \displaystyle{A}^{{-{1}}} such that \displaystyle{A}{A}^{{-{1}}}={A}^{{-{1}}}{A}={I} ...
How do you find the inverse of \displaystyle{\left[\begin{array}{cc} {2}&-{3}\\-{2}&-{2}\end{array}\right]} ?
https://socratic.org/questions/how-do-you-find-the-inverse-of-2-3-2-2
The answer is \displaystyle={\left(\begin{array}{cc} \frac{{1}}{{5}}&-\frac{{3}}{{10}}\\-\frac{{1}}{{5}}&-\frac{{1}}{{5}}\end{array}\right)} Explanation: The inverse of the matrix \displaystyle{\left(\begin{array}{cc} {a}&{b}\\{c}&{d}\end{array}\right)} ...
How do you multiply matrices \displaystyle{\left(\begin{array}{cc} {3}&-{2}\\{3}&{1}\\-{2}&{4}\end{array}\right)} and \displaystyle{\left(\begin{array}{cc} {3}&{1}\\-{2}&{4}\end{array}\right)} ...
https://socratic.org/questions/how-do-you-multiply-matrices-3-2-3-1-2-4-and-3-1-2-4-and-2-4-1-3
Please see the explanations below Explanation: Matrix multiplication is \displaystyle{\left(\begin{array}{cc} {a}&{b}\\{c}&{d}\\{e}&{f}\end{array}\right)}\times{\left(\begin{array}{cc} {p}&{q}\\{r}&{s}\end{array}\right)}={\left(\begin{array}{cc} \text{ap+br}&\text{aq+bs}\\\text{cp+dr}&\text{cq+ds}\\\text{ep+fr}&\text{eq+fs}\end{array}\right)} ...
More Items
Share
Copy
Copied to clipboard
-3y=-4-3
Consider the first equation. Subtract 3 from both sides.
-3y=-7
Subtract 3 from -4 to get -7.
y=\frac{-7}{-3}
Divide both sides by -3.
y=\frac{7}{3}
Fraction \frac{-7}{-3} can be simplified to \frac{7}{3} by removing the negative sign from both the numerator and the denominator.
z=-2\times \left(\frac{7}{3}\right)
Consider the second equation. Insert the known values of variables into the equation.
z=-\frac{14}{3}
Multiply -2 and \frac{7}{3} to get -\frac{14}{3}.
a=-\frac{14}{3}
Consider the third equation. Insert the known values of variables into the equation.
y=\frac{7}{3} z=-\frac{14}{3} a=-\frac{14}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top