Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

216-9\left(7x+2\right)=144x+8\left(5x+1\right)
Consider the first equation. Multiply both sides of the equation by 72, the least common multiple of 8,9.
216-63x-18=144x+8\left(5x+1\right)
Use the distributive property to multiply -9 by 7x+2.
198-63x=144x+8\left(5x+1\right)
Subtract 18 from 216 to get 198.
198-63x=144x+40x+8
Use the distributive property to multiply 8 by 5x+1.
198-63x=184x+8
Combine 144x and 40x to get 184x.
198-63x-184x=8
Subtract 184x from both sides.
198-247x=8
Combine -63x and -184x to get -247x.
-247x=8-198
Subtract 198 from both sides.
-247x=-190
Subtract 198 from 8 to get -190.
x=\frac{-190}{-247}
Divide both sides by -247.
x=\frac{10}{13}
Reduce the fraction \frac{-190}{-247} to lowest terms by extracting and canceling out -19.
y=\frac{10}{13}+3\times \frac{10}{13}-\frac{10}{13}+1
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{10}{13}+\frac{30}{13}-\frac{10}{13}+1
Multiply 3 and \frac{10}{13} to get \frac{30}{13}.
y=\frac{40}{13}-\frac{10}{13}+1
Add \frac{10}{13} and \frac{30}{13} to get \frac{40}{13}.
y=\frac{30}{13}+1
Subtract \frac{10}{13} from \frac{40}{13} to get \frac{30}{13}.
y=\frac{43}{13}
Add \frac{30}{13} and 1 to get \frac{43}{13}.
z=\frac{43}{13}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{10}{13} y=\frac{43}{13} z=\frac{43}{13}
The system is now solved.