Solve for x, y, z
z=4
Share
Copied to clipboard
15-3x-\frac{1}{7}\left(2\times 1x-0\times 77\right)=0\times 0\times 9-2x
Consider the first equation. Use the distributive property to multiply 3 by 5-x.
15-3x-\frac{1}{7}\left(2x-0\times 77\right)=0\times 0\times 9-2x
Multiply 2 and 1 to get 2.
15-3x-\frac{1}{7}\left(2x-0\right)=0\times 0\times 9-2x
Multiply 0 and 77 to get 0.
15-3x-\frac{1}{7}\left(2x-0\right)=0\times 9-2x
Multiply 0 and 0 to get 0.
15-3x-\frac{1}{7}\left(2x-0\right)=0-2x
Multiply 0 and 9 to get 0.
15-3x-\frac{1}{7}\left(2x-0\right)=-2x
Anything plus zero gives itself.
15-3x-\frac{1}{7}\left(2x-0\right)+2x=0
Add 2x to both sides.
-3x+15-\frac{1}{7}\times 2x+2x=0
Reorder the terms.
-3x+15-\frac{2}{7}x+2x=0
Multiply -\frac{1}{7} and 2 to get -\frac{2}{7}.
-\frac{23}{7}x+15+2x=0
Combine -3x and -\frac{2}{7}x to get -\frac{23}{7}x.
-\frac{9}{7}x+15=0
Combine -\frac{23}{7}x and 2x to get -\frac{9}{7}x.
-\frac{9}{7}x=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x=-15\left(-\frac{7}{9}\right)
Multiply both sides by -\frac{7}{9}, the reciprocal of -\frac{9}{7}.
x=\frac{35}{3}
Multiply -15 and -\frac{7}{9} to get \frac{35}{3}.
x=\frac{35}{3} y=4 z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}