Solve for y, z, x, a, b
b=78
Share
Copied to clipboard
a=78
Consider the fourth equation. Multiply 13 and 6 to get 78.
b=78
Consider the fifth equation. Insert the known values of variables into the equation.
154\times 13\times 6y+0z=408\times 24
Consider the first equation. Multiply 22 and 7 to get 154.
2002\times 6y+0z=408\times 24
Multiply 154 and 13 to get 2002.
12012y+0z=408\times 24
Multiply 2002 and 6 to get 12012.
12012y+0=408\times 24
Anything times zero gives zero.
12012y=408\times 24
Anything plus zero gives itself.
12012y=9792
Multiply 408 and 24 to get 9792.
y=\frac{9792}{12012}
Divide both sides by 12012.
y=\frac{816}{1001}
Reduce the fraction \frac{9792}{12012} to lowest terms by extracting and canceling out 12.
x+13\times 6\times \frac{816}{1001}+22\times 68z=362\times 88
Consider the second equation. Insert the known values of variables into the equation.
x+78\times \frac{816}{1001}+1496z=362\times 88
Do the multiplications.
x+\frac{4896}{77}+1496z=362\times 88
Multiply 78 and \frac{816}{1001} to get \frac{4896}{77}.
x+\frac{4896}{77}+1496z=31856
Multiply 362 and 88 to get 31856.
x+1496z=31856-\frac{4896}{77}
Subtract \frac{4896}{77} from both sides.
x+1496z=\frac{2448016}{77}
Subtract \frac{4896}{77} from 31856 to get \frac{2448016}{77}.
9\times 0\times 7x+13\times 6\times \frac{816}{1001}+22\times 68z=317\times 52
Consider the third equation. Insert the known values of variables into the equation.
0\times 7x+78\times \frac{816}{1001}+1496z=317\times 52
Do the multiplications.
0x+78\times \frac{816}{1001}+1496z=317\times 52
Multiply 0 and 7 to get 0.
0+78\times \frac{816}{1001}+1496z=317\times 52
Anything times zero gives zero.
0+\frac{4896}{77}+1496z=317\times 52
Multiply 78 and \frac{816}{1001} to get \frac{4896}{77}.
\frac{4896}{77}+1496z=317\times 52
Add 0 and \frac{4896}{77} to get \frac{4896}{77}.
\frac{4896}{77}+1496z=16484
Multiply 317 and 52 to get 16484.
1496z=16484-\frac{4896}{77}
Subtract \frac{4896}{77} from both sides.
1496z=\frac{1264372}{77}
Subtract \frac{4896}{77} from 16484 to get \frac{1264372}{77}.
z=\frac{\frac{1264372}{77}}{1496}
Divide both sides by 1496.
z=\frac{1264372}{77\times 1496}
Express \frac{\frac{1264372}{77}}{1496} as a single fraction.
z=\frac{1264372}{115192}
Multiply 77 and 1496 to get 115192.
z=\frac{316093}{28798}
Reduce the fraction \frac{1264372}{115192} to lowest terms by extracting and canceling out 4.
x+1496\times \frac{316093}{28798}=\frac{2448016}{77}
Consider the second equation. Insert the known values of variables into the equation.
x+\frac{1264372}{77}=\frac{2448016}{77}
Multiply 1496 and \frac{316093}{28798} to get \frac{1264372}{77}.
x=\frac{2448016}{77}-\frac{1264372}{77}
Subtract \frac{1264372}{77} from both sides.
x=15372
Subtract \frac{1264372}{77} from \frac{2448016}{77} to get 15372.
y=\frac{816}{1001} z=\frac{316093}{28798} x=15372 a=78 b=78
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}