Solve for x, y, z
z=5.2
Share
Copied to clipboard
7.2-2.4x-0.6\left(2x-3\right)=0
Consider the first equation. Use the distributive property to multiply 2.4 by 3-x.
7.2-2.4x-1.2x+1.8=0
Use the distributive property to multiply -0.6 by 2x-3.
7.2-3.6x+1.8=0
Combine -2.4x and -1.2x to get -3.6x.
9-3.6x=0
Add 7.2 and 1.8 to get 9.
-3.6x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9}{-3.6}
Divide both sides by -3.6.
x=\frac{-90}{-36}
Expand \frac{-9}{-3.6} by multiplying both numerator and the denominator by 10.
x=\frac{5}{2}
Reduce the fraction \frac{-90}{-36} to lowest terms by extracting and canceling out -18.
y=\frac{5}{2}+2.7
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{26}{5}
Add \frac{5}{2} and 2.7 to get \frac{26}{5}.
z=\frac{26}{5}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{5}{2} y=\frac{26}{5} z=\frac{26}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}