Solve for x, y, z, a
a=-19
Share
Copied to clipboard
10-5x=2\times 9x
Consider the first equation. Add 2 and 8 to get 10.
10-5x=18x
Multiply 2 and 9 to get 18.
10-5x-18x=0
Subtract 18x from both sides.
10-23x=0
Combine -5x and -18x to get -23x.
-23x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-10}{-23}
Divide both sides by -23.
x=\frac{10}{23}
Fraction \frac{-10}{-23} can be simplified to \frac{10}{23} by removing the negative sign from both the numerator and the denominator.
x=\frac{10}{23} y=-19 z=-19 a=-19
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}