Solve for t, u, v
v=5
Share
Copied to clipboard
2-16t=-18t+12
Consider the first equation. Use the distributive property to multiply 6 by -3t+2.
2-16t+18t=12
Add 18t to both sides.
2+2t=12
Combine -16t and 18t to get 2t.
2t=12-2
Subtract 2 from both sides.
2t=10
Subtract 2 from 12 to get 10.
t=\frac{10}{2}
Divide both sides by 2.
t=5
Divide 10 by 2 to get 5.
u=5
Consider the second equation. Insert the known values of variables into the equation.
v=5
Consider the third equation. Insert the known values of variables into the equation.
t=5 u=5 v=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}