Solve for k, l, m
m=-14
Share
Copied to clipboard
6k+10=-4k-30
Consider the first equation. Use the distributive property to multiply 2 by 3k+5.
6k+10+4k=-30
Add 4k to both sides.
10k+10=-30
Combine 6k and 4k to get 10k.
10k=-30-10
Subtract 10 from both sides.
10k=-40
Subtract 10 from -30 to get -40.
k=\frac{-40}{10}
Divide both sides by 10.
k=-4
Divide -40 by 10 to get -4.
l=3\left(-4\right)-2
Consider the second equation. Insert the known values of variables into the equation.
l=-12-2
Multiply 3 and -4 to get -12.
l=-14
Subtract 2 from -12 to get -14.
m=-14
Consider the third equation. Insert the known values of variables into the equation.
k=-4 l=-14 m=-14
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}