Solve for k, l, m, n
n=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
3+6k=\frac{14}{2}
Consider the first equation. Divide both sides by 2.
3+6k=7
Divide 14 by 2 to get 7.
6k=7-3
Subtract 3 from both sides.
6k=4
Subtract 3 from 7 to get 4.
k=\frac{4}{6}
Divide both sides by 6.
k=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
l=\frac{2}{3}
Consider the second equation. Insert the known values of variables into the equation.
m=\frac{2}{3}
Consider the third equation. Insert the known values of variables into the equation.
n=\frac{2}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
k=\frac{2}{3} l=\frac{2}{3} m=\frac{2}{3} n=\frac{2}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}