Solve for y, x, z, a, b, c, d
d = -\frac{35212789393}{129133500} = -272\frac{88477393}{129133500} \approx -272.6851622
Share
Copied to clipboard
0\times 251\times 4\times 472.578+0.7486y=\frac{321.487}{2}
Consider the first equation. Divide both sides by 2.
0\times 251\times 4\times 472.578+0.7486y=\frac{321487}{2000}
Expand \frac{321.487}{2} by multiplying both numerator and the denominator by 1000.
0\times 4\times 472.578+0.7486y=\frac{321487}{2000}
Multiply 0 and 251 to get 0.
0\times 472.578+0.7486y=\frac{321487}{2000}
Multiply 0 and 4 to get 0.
0+0.7486y=\frac{321487}{2000}
Multiply 0 and 472.578 to get 0.
0.7486y=\frac{321487}{2000}
Anything plus zero gives itself.
y=\frac{\frac{321487}{2000}}{0.7486}
Divide both sides by 0.7486.
y=\frac{321487}{2000\times 0.7486}
Express \frac{\frac{321487}{2000}}{0.7486} as a single fraction.
y=\frac{321487}{1497.2}
Multiply 2000 and 0.7486 to get 1497.2.
y=\frac{3214870}{14972}
Expand \frac{321487}{1497.2} by multiplying both numerator and the denominator by 10.
y=\frac{1607435}{7486}
Reduce the fraction \frac{3214870}{14972} to lowest terms by extracting and canceling out 2.
\frac{1607435}{7486}=0.1449x+0.2739\times 472.578+0.5812\times \frac{1607435}{7486}
Consider the second equation. Insert the known values of variables into the equation.
\frac{1607435}{7486}=0.1449x+129.4391142+0.5812\times \frac{1607435}{7486}
Multiply 0.2739 and 472.578 to get 129.4391142.
\frac{1607435}{7486}=0.1449x+129.4391142+\frac{467120611}{3743000}
Multiply 0.5812 and \frac{1607435}{7486} to get \frac{467120611}{3743000}.
\frac{1607435}{7486}=0.1449x+\frac{4758056077253}{18715000000}
Add 129.4391142 and \frac{467120611}{3743000} to get \frac{4758056077253}{18715000000}.
0.1449x+\frac{4758056077253}{18715000000}=\frac{1607435}{7486}
Swap sides so that all variable terms are on the left hand side.
0.1449x=\frac{1607435}{7486}-\frac{4758056077253}{18715000000}
Subtract \frac{4758056077253}{18715000000} from both sides.
0.1449x=-\frac{739468577253}{18715000000}
Subtract \frac{4758056077253}{18715000000} from \frac{1607435}{7486} to get -\frac{739468577253}{18715000000}.
x=\frac{-\frac{739468577253}{18715000000}}{0.1449}
Divide both sides by 0.1449.
x=\frac{-739468577253}{18715000000\times 0.1449}
Express \frac{-\frac{739468577253}{18715000000}}{0.1449} as a single fraction.
x=\frac{-739468577253}{2711803500}
Multiply 18715000000 and 0.1449 to get 2711803500.
x=-\frac{35212789393}{129133500}
Reduce the fraction \frac{-739468577253}{2711803500} to lowest terms by extracting and canceling out 21.
z=-\frac{35212789393}{129133500}-0
Consider the third equation. Insert the known values of variables into the equation.
z=-\frac{35212789393}{129133500}
Subtract 0 from -\frac{35212789393}{129133500} to get -\frac{35212789393}{129133500}.
a=-\frac{35212789393}{129133500}
Consider the fourth equation. Insert the known values of variables into the equation.
b=-\frac{35212789393}{129133500}
Consider the fifth equation. Insert the known values of variables into the equation.
c=-\frac{35212789393}{129133500}
Consider the equation (6). Insert the known values of variables into the equation.
d=-\frac{35212789393}{129133500}
Consider the equation (7). Insert the known values of variables into the equation.
y=\frac{1607435}{7486} x=-\frac{35212789393}{129133500} z=-\frac{35212789393}{129133500} a=-\frac{35212789393}{129133500} b=-\frac{35212789393}{129133500} c=-\frac{35212789393}{129133500} d=-\frac{35212789393}{129133500}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}