Solve for s, x, y, z
z = \frac{247}{24} = 10\frac{7}{24} \approx 10.291666667
Share
Copied to clipboard
4+4^{2}=20s
Consider the first equation. Calculate 2 to the power of 2 and get 4.
4+16=20s
Calculate 4 to the power of 2 and get 16.
20=20s
Add 4 and 16 to get 20.
20s=20
Swap sides so that all variable terms are on the left hand side.
s=\frac{20}{20}
Divide both sides by 20.
s=1
Divide 20 by 20 to get 1.
17^{2}+24x+1=537
Consider the second equation. Add 7 and 10 to get 17.
289+24x+1=537
Calculate 17 to the power of 2 and get 289.
290+24x=537
Add 289 and 1 to get 290.
24x=537-290
Subtract 290 from both sides.
24x=247
Subtract 290 from 537 to get 247.
x=\frac{247}{24}
Divide both sides by 24.
y=\frac{247}{24}
Consider the third equation. Insert the known values of variables into the equation.
z=\frac{247}{24}
Consider the fourth equation. Insert the known values of variables into the equation.
s=1 x=\frac{247}{24} y=\frac{247}{24} z=\frac{247}{24}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}