Solve for x, y, z
z=1
Share
Copied to clipboard
15-3x-12=12-2\left(x+3\right)
Consider the first equation. Use the distributive property to multiply -3 by x+4.
3-3x=12-2\left(x+3\right)
Subtract 12 from 15 to get 3.
3-3x=12-2x-6
Use the distributive property to multiply -2 by x+3.
3-3x=6-2x
Subtract 6 from 12 to get 6.
3-3x+2x=6
Add 2x to both sides.
3-x=6
Combine -3x and 2x to get -x.
-x=6-3
Subtract 3 from both sides.
-x=3
Subtract 3 from 6 to get 3.
x=-3
Divide both sides by -1.
x=-3 y=1 z=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}