Solve for r, s, t
t=5.96
Share
Copied to clipboard
14.42=2r+2.5
Consider the first equation. The opposite of -2.5 is 2.5.
2r+2.5=14.42
Swap sides so that all variable terms are on the left hand side.
2r=14.42-2.5
Subtract 2.5 from both sides.
2r=11.92
Subtract 2.5 from 14.42 to get 11.92.
r=\frac{11.92}{2}
Divide both sides by 2.
r=\frac{1192}{200}
Expand \frac{11.92}{2} by multiplying both numerator and the denominator by 100.
r=\frac{149}{25}
Reduce the fraction \frac{1192}{200} to lowest terms by extracting and canceling out 8.
s=\frac{149}{25}
Consider the second equation. Insert the known values of variables into the equation.
t=\frac{149}{25}
Consider the third equation. Insert the known values of variables into the equation.
r=\frac{149}{25} s=\frac{149}{25} t=\frac{149}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}