Solve for r, s, t, u, v, w, x
x=-4
Share
Copied to clipboard
-8r-3+5r=9
Consider the first equation. Add 5r to both sides.
-3r-3=9
Combine -8r and 5r to get -3r.
-3r=9+3
Add 3 to both sides.
-3r=12
Add 9 and 3 to get 12.
r=\frac{12}{-3}
Divide both sides by -3.
r=-4
Divide 12 by -3 to get -4.
s=-4
Consider the second equation. Insert the known values of variables into the equation.
t=-4
Consider the third equation. Insert the known values of variables into the equation.
u=-4
Consider the fourth equation. Insert the known values of variables into the equation.
v=-4
Consider the fifth equation. Insert the known values of variables into the equation.
w=-4
Consider the equation (6). Insert the known values of variables into the equation.
x=-4
Consider the equation (7). Insert the known values of variables into the equation.
r=-4 s=-4 t=-4 u=-4 v=-4 w=-4 x=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}