Solve for x, y, z
z=360
Share
Copied to clipboard
-3x=-1
Consider the first equation. Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1}{-3}
Divide both sides by -3.
x=\frac{1}{3}
Fraction \frac{-1}{-3} can be simplified to \frac{1}{3} by removing the negative sign from both the numerator and the denominator.
y=\sqrt{64\times 3^{4}\times 5^{2}}
Consider the second equation. Calculate 2 to the power of 6 and get 64.
y=\sqrt{64\times 81\times 5^{2}}
Calculate 3 to the power of 4 and get 81.
y=\sqrt{5184\times 5^{2}}
Multiply 64 and 81 to get 5184.
y=\sqrt{5184\times 25}
Calculate 5 to the power of 2 and get 25.
y=\sqrt{129600}
Multiply 5184 and 25 to get 129600.
y=360
Calculate the square root of 129600 and get 360.
z=360
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{1}{3} y=360 z=360
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}