Solve for u, v, w
w=-9
Share
Copied to clipboard
-3u=4-1
Consider the first equation. Subtract 1 from both sides.
-3u=3
Subtract 1 from 4 to get 3.
u=\frac{3}{-3}
Divide both sides by -3.
u=-1
Divide 3 by -3 to get -1.
v=4\left(-1\right)-5
Consider the second equation. Insert the known values of variables into the equation.
v=-4-5
Multiply 4 and -1 to get -4.
v=-9
Subtract 5 from -4 to get -9.
w=-9
Consider the third equation. Insert the known values of variables into the equation.
u=-1 v=-9 w=-9
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}