Solve for x, y, z
z = -\frac{99}{19} = -5\frac{4}{19} \approx -5.210526316
Share
Copied to clipboard
-21x=-x+3-\left(x+2\right)+10
Consider the first equation. Combine -15x and -6x to get -21x.
-21x=-x+3-x-2+10
To find the opposite of x+2, find the opposite of each term.
-21x=-x+1-x+10
Subtract 2 from 3 to get 1.
-21x=-x+11-x
Add 1 and 10 to get 11.
-21x+x=11-x
Add x to both sides.
-20x=11-x
Combine -21x and x to get -20x.
-20x+x=11
Add x to both sides.
-19x=11
Combine -20x and x to get -19x.
x=-\frac{11}{19}
Divide both sides by -19.
y=9\left(-\frac{11}{19}\right)
Consider the second equation. Insert the known values of variables into the equation.
y=-\frac{99}{19}
Multiply 9 and -\frac{11}{19} to get -\frac{99}{19}.
z=-\frac{99}{19}
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{11}{19} y=-\frac{99}{19} z=-\frac{99}{19}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}